An Event-Detection High Dynamic Range CMOS Image Sensor

G. Köklü1,2, D. Sun1, Y. Leblebici1, G. De Micheli1, S. Carrara1

1Integrated Systems Laboratory (LSI), EPFL
2Microelectronic Systems Laboratory (LSM), EPFL

OUTLINE

- A novel Event-Detection CMOS Image Sensor providing,
- Digital pixel output – lossless readout of the pixel results
- High precision – depends on the counter, dac and comparator results
- High dynamic range – depends on the counter, dac and comparator results
- Low pixel area compared to other digital pixel sensors – reduced pixel level memory

- Characteristics:
 - Pixel level event generation mechanism by using a binary search technique.
 - Technology: UMC 0.18um
 - Photo-active area: p+p-well/p-sub phototransistor
 - (11.24μm × 10.79μm)
 - Total pixel array size: 0-VGA – 160 (H) x 120 (V)
 - Total Pixel Area: 1505.62μm x 4566μm
 - Fill Factor: 34%

- Pixel Mechanism
 - Ramp voltage generation - 10-bit counter + Digital to Analog Converter
 - Clock Analog Comparator: Ramp voltage vs Pixel integrated voltage at each clock cycle
 - Digital Comparison Block: 1 bit memory + XOR
 - pixel previous value vs pixel current value – generation of the event signal

- Similar Designs

PIXEL DESIGN AND TIMING

- Pixel Working Mechanism
 - At the rising edge of Cnt_clk
 - Counter Value – # Vramp decrements
 - When clk_comp = 0
 - if Vramp (Pixel Voltage) > Vramp
 - Comp_out = 1;
 - else
 - Comp_out = 0
 - When clk_done = 1
 - Previous_out = Comp_out;

- Event is generated when Previous_out = Comp_out = 1

PIXEL COMPONENTS

- 5 Transistor SRAM Cell
- COMPARATOR WORKING TIMING

2 STAGE CLOCKED COMPARE

- 1st Stage – Pre-amplifier Stage
- Input: Pixel output (IN) and Ramp voltage (IN-)
- 2nd Stage – Clock comparator:
- Outputs:
 - When CLK = 0
 - OUT1 = 0, OUT2 = 0
 - When CLK = 1
 - if IN- = IN
 - OUT1 = 1, OUT2 = –0
 - else
 - if IN- > IN
 - OUT1 = 0, OUT2 = –1
 - else
 - if IN- < IN
 - OUT1 = 0, OUT2 = –0

PRIORITY ENCODER & COUNTER

- Finite State Machine of the Priority Encoder
- Finite State Machine of the Counter

- Reset: initialized only when receiving a new frame and the counter has decremented to 0:
- IDLE: no event has been found in any pixel and no address has to be registered:
- RUN: single or multiple events have been found and the priority should be shifted and each priority encoder output should be registered which gives the address of the active pixel:
- Hold: only if multiple pixels are active and the priority has to be shifted from one to another until all the active pixel addresses are registered:
- RUN: counter decrements its value at each clock cycle.

TOP LEVEL SCHEMATIC - SIMULATIONS - TOP LEVEL LAYOUT

- SINGLE EVENT GENERATION MECHANISM
- MULTIPLE EVENT GENERATION MECHANISM

Graphs and diagrams showing event detection mechanisms and timing diagrams.