Introducing SMOSE

A tool for design and analysis of integrated energy systems
OSMOSE is a computation platform built to study and design energy systems. The functionalities of OSMOSE are organized in a three-layer architecture.
Osmose1 main tasks
- model interrogation
- cross-software communication
- superstructure generation

Models architecture
- Material and chemical balance
- Heat and power integration
- Thermo-economic performance

Thermo-economical state of the system with optimal heat integration
Osmose2 main tasks

- organize and handle computations
- results storage

Computation options

- Multi-objective optimization
- Sensitivity analysis
- Data reconciliation
- Model snapshot
- Semi-newton optimization

Results for energy system design decision makers
Osmose3 main tasks

- automated results analysis
- results and model sharing
- communication

Features

- Analysis and statistics
- Reporting
- Plotting
- Web service
- Models database

Knowledge storage and sharing

Wizard for results handling and analysis
Selected Publications

A Methodology for Thermo-Economic Modeling and Optimization of SOFC Systems / Palazzi, Francesca; Autissier, Nordahl; Maréchal, François; Van herle, Jan – In Chemical Engineering Transactions, vol. 7 (2005), p. 13-18

Project Team

Francesca Palazzi
Raffaele Bolliger
Daniel Favrat
François Maréchal
Luc Girardin
Irene Ricart-Puig
Zoé Pépin-Levasseur
Nicolas Borboën
Damien Muller

Laboratoire d’Énergétique Industrielle
École Polytechnique Fédérale de Lausanne
ME A2 434 (Bâtiment ME)
Station 9
CH-1015 Lausanne
Tél.: +41 21 693 35 07
Fax: +41 21 693 73 22
http://leniwww.epfl.ch