Chapter II.1

Historical background of active noise control

Advanced audio engineering for active noise control
H. Lissek
Introduction

• Active noise control involves the electro-acoustic generation of a sound field to cancel or lower an unwanted primary field.
• It is basically derived from the principle of superposition of sound fields, which comprises the acoustic interferences principle.

• An usual single-channel active noise control system comprise:
 • a reference sensor (e.g. microphone) for sensing a parameter of the noise to be cancelled
 • an electronic control disposal to process the reference signal and the control signal
 • an actuator (loudspeaker) driven by the control signal to generate the cancelling disturbance
 • an error sensor to provide the controller with information so that it can adjust itself to minimize the resulting sound field
Introduction
Introduction

• This standard system is "adaptive":
 • it adapts itself to variations of the primary noise
 • it adapts to changing environmental conditions
 • error and reference sensing provide the input of the adaptation
Brief story: the early years

• 1878: presumptions made by Lord Rayleigh on the basis of electromagnetics experiments
 ➔ Points of Silence

• 1878: Thompson observes sound cancellation from two Bell telephones

• 1930: H. Coanda patented the idea of sound cancellation by destructive interferences
 • Electroacoustic system to generate a signal of opposite phase to the unwanted sound

• 1933: P. Lueg described and patented the use of active sound cancellation as an alternative to passive control for low frequency sound in a duct
Brief story: the early years

Lueg patent
Brief story: the early years

• 1953: Olson develops active sound cancellation in rooms, in ducts and in headsets and earmuffs using feedback control
 • very limited attenuation over limited frequency band
 • instability due to high frequency noise with phase delay >180 °
 • limitations due to poor electronic availability
Brief story: the early years

• 1956: Conover demonstrated an active noise cancellation system for transformer noise
 • need to be adjusted in time by operator
 • noise reduction in a very narrow angle from the loudspeaker axis, localized area of efficiency, low acoustic benefits
 • even though 20 dB attenuation is possible at the error sensor ➔ impractical
 • concludes to the difficulty to “fight noise with noise”
Brief story: the early years

• 1972: Jessel obtained good results on the Olson system basis
 • enhancement of secondary sources, use of multiple sources, application of Huygens principle
 ➔ shall use numerous, directive, loudspeaker

• 1973: Swinbanks developed an active dipole (2 active noise loudspeakers at each extremity of a duct, and an electronic delay) with the aim of lowering exhaust noise

• 10 years after …
Brief story: from theory to practice

• Transition from laboratory to production took a long time:
 • time to develop sufficiently powerful signal processing electronics,
 • understanding of the physical principles involved
 • multi-disciplinary nature of the technology
 • control,
 • signal processing,
 • electronics,
 • acoustics and vibration.

• It was not until the early 1990s that regular implementations of active noise cancellation outside of the laboratory were reported (Ericksson, 1990, 1991) and Wise et al. (1992).
• Since that time numerous practical implementations have been reported, including systems for reducing helicopter and aircraft cabin noise.
Brief story: from theory to practice

Patents:
- interest in the technology ➔ exponentially increasing number of research publications on active control
- number of technical papers published since the 1930s increased from:
 - approximately 240 before 1970
 - 850 in the 1970s
 - 2,200 in the 1980s,
 - over 4,000 in the 1990s.
Brief story: from theory to practice

- Exhaustive list of patents:
 - see Guicking’s Online Reference Bibliography on Active Noise Control (GORBI 1.1), available on CD-ROM and booklet
 - More than 8’300 patent references !!!
The Energy Objection

• Where does the energy go?
 • In the interference theory, the cancellation of noise in one point leads to doubling noise elsewhere. Global energy conservation.

• But in the more general case: reveals that secondary sources can absorb the primary energy: the energy transfer is then to be accurately investigated... (see later chapters...)
References

• M. Rossi, Collection “Electricité” - Audio, PPUR, Lausanne 2007

• D. Guicking, Patents on Active Control of Sound and Vibration – an overview, edited by the author, Göttingen 2005