The CLEANLE project within HOMOFABER framework

Presentation for students involvement during spring semester 2011
The Interdisciplinary Aerodynamics Group (IAG)

- Cost group within EPFL-STI
 - Administarted by Prof. D. Psaltis
 - Led by Dr. P. Leyland
- Nowadays 10 permanent members
 - 1 group leader
 - 1 Post-doc
 - 4 PhD Students
 - 1 Engineer
 - 3 External collaborators
- BSc/MSc Students
IAG field of competences

• General aerodynamics analysis
 – Vehicles
 – Propulsion systems
• Flight dynamics
 – Flight models
 – Trajectory analyses
• Computational codes developments and use
• Noise emissions
 – Computational aeroacoustics
• Pollutants and particles emissions analyses and assessment
 – Production mechanisms
 – Dispersion and diffusion mechanisms
 – Certification
• Physics modelling for aerothermodynamics
 – Chemistry and reaction phenomena
 – Combustion
 – Heat transfer
 – Radiation
 – Ablation
• Multidisciplinary coupling
 – Multi-physics couplings (aero-elasticity, aero-acoustics, plasma-aerodynamics)
 – Multidisciplinary multi-objectives optimisation
• Systems engineering
 – Complex systems assessments and evaluation methodologies
 – Risk assessment
 – Concepts of operations
The CLEANLE project within HOMOFABER framework

Project overview

Objective

Explore the possible solutions for cleaning devices capable of clearing out the leading edges of business jets or airliners
The CLEANLE project within HOMOFABER framework
The CLEANLE project within HOMOFABER framework

Project partners

- CleanSky FP7 CE funded
The CLEANLE project within HOMOFABER framework

Project partners

- Mandated by IFAM, Bremen (D)
The CLEANLE project within HOMOFABER framework

Project partners

• In collaboration with PAS (A)
The CLEANLE project within HOMOFABER framework

The whole CLEANLE project duration is 18 months
The HOMOFABER project will take place from 5th to 7th months
Further MSc semester projects available
HOMOFABER contribution

- Task 1.1: Documentation about existing concepts
 - Exhaustive documentation gathering and selection of potentially extrapolable existing concepts
 - Reverse engineering
 - Re-design

- Task 1.2: Investigation for alternate and innovative concepts
 - Identification and definition of innovative designs
 - Trade-offs
 - Design

Re-design HOMOFABER group

3 to 5 students

Innovative designs HOMOFABER group

3 to 8 students
The CLEANLE project within HOMOFABER framework

HOMOFABER contribution

- Documentation gathering
 - Industrial actors identification
 - Cleaning mechanisms identification
 - Cinematic mechanisms identification
- Documentation summary
- Trade-off study
 - Methodology definition
 - Extrapolation potential evaluation
 - Solutions selection

• Reverse engineering
 - Selected solutions measuring
 - Drawing of selected solutions
 - Dimensioning models
• Re-design
 - Modifications identification
 - Re-dimensioning
 - Final solution design

Re-design HOMOFABER group
HOMOFABER contribution

- Cleaning physical principles
- Implementation constraints
 - Bizjet and Airliner wings layouts
 - Implementation difficulties evaluation
- Propositions for innovative solutions (8)
 - Principle schemes
 - Dimensioning models

• Trade-off study
 - Methodology definition
 - Solutions evaluation
 - Solutions selection (3)

• Design
 - Dimensioning
 - Drawing of selected solutions
 - Final designs assessment

Innovative designs HOMOFABER group
General skills/interests required

- General mechanical design
- Aircraft systems
- Cleaning technologies
- Industrial level of requirements
- Team work
Specific skills/interests required

Re-design HOMOFABER group

- Mechanical systems design
 - Statics
 - Dynamics
- Reverse engineering
 - Metrology
- Computer environment
 - CAD/CAO (CATIA V5)
 - Matlab

Innovative designs HOMOFABER group

- Mechanical systems design
 - Statics
 - Dynamics
- Innovation spirit
- Computer environment
 - CAD/CAO (CATIA V5)
 - Matlab
Concurrent work implementation

Re-design HOMOFABER group

Documentation gathering
Documentation summary
Trade-off study
Reverse engineering
Re-design

Concurrent tasks

Common need of cleaning mechanisms identification
Common need of design requirements
Common need of trade-off methodology
Overall final design assessment

Cleaning physical principles
Implementation constraints
Propositions for innovative solutions
Trade-off study
Design

Innovative design HOMOFABER group
The CLEANLE project within HOMOFABER framework

Any Questions?

More details on http://iag.epfl.ch
Contact: pierre.wilhelm@epfl.ch