Coating by Cubes

K. Bezdek\(^1\) and T. Hausel\(^1\)

Department of Geometry, Eötvös L. University
1088 Budapest, Rákóczi út 5, Hungary

1. Introduction

Let \(P_0, P_1, \ldots, P_n \) be convex \(d \)-polytopes in \(d \)-dimensional Euclidean space with pairwise disjoint interiors. We say that \(P_0 \) is \emph{coated} by \(P_1, \ldots, P_n \) if \(P_0 \subseteq \text{int} \left(\bigcup_{i=0}^{n} P_i \right) \), where \(\text{int}(\cdot) \) stands for the interior of the corresponding set. Coating occurs very often in a very natural way. For example, in each tiling every tile is coated by its neighbors. Thus, if we take an arbitrary triangulation of \(E^d \), then the number of neighbors of any tile is at least as large as the minimum number of \(d \)-simplices that can coat a \(d \)-simplex in \(E^d \). In this connection the following problem is a rather very basic question.

Problem 1. Find the minimum number of \(d \)-simplices that can coat a \(d \)-simplex in \(E^d \).

The answer to the above question is obviously three in \(E^2 \). In general, we know only the following.

Proposition. Every \(d \)-simplex can be coated by \((2d - 1)\) \(d \)-simplices in \(E^d \), where \(d \geq 2 \).

Since the number of facets of a \(d \)-cube in \(E^d \) is \(2d \), the number of \(d \)-cubes that can coat a fixed \(d \)-cube is at least \(2d \). The following theorem formulates a sharper statement under some conditions.

Theorem. Let \(P_0 \) be a \(d \)-cube of edgelength \(\lambda \) with edges parallel to the coordinate-axes of \(E^d \). Moreover, let \(P_1, \ldots, P_n \) be a collection of unit \(d \)-cubes with edges parallel to the coordinate-axes of \(E^d \) such that \(P_0 \) is coated by \(P_1, \ldots, P_n \).

1. If \(0 < \lambda < 1 \), then \(n \geq 2^d \), where equality can be achieved for any \(0 < \lambda < 1 \) and \(d \geq 1 \).
2. If \(\lambda = k \) is a positive integer, then \(n \geq 2(k + 1)^d - 2k^d \), where equality can be achieved for any \(k \geq 1 \) and \(d \geq 1 \).

\(^1\) The work was partially supported by the Hung. Nat. Foundation for Sci. Research number 326-0413.
As a result we get the following:

Corollary. The minimum number of the translates of a d–cube that can coat a given d–cube in E^d is at least 2^d, where $d \geq 1$. If all d–cubes are translates of each other, then 2^d can be replaced by $2^{d+1} - 2$.

Problem 2. Prove or disprove that the minimum number of d–cubes that can coat a d–cube in E^d is $2^{d-1} + 2$, where $d \geq 2$.

2. **Proof of the Proposition**

We prove the statement by induction on the dimension d. As the claim is obviously true for $d = 2$ we may assume that it is true for any $d' < d$ with $d \geq 3$. Thus, let S be a d–simplex in E^d with vertices $v_1, v_2, \ldots, v_{d+1}$. Moreover, let H be the hyperplane in E^d spanned by the vertices v_1, v_2, \ldots, v_d and let S_0 be the $(d-1)$–simplex with vertices v_1, v_2, \ldots, v_d. By induction there are $(d-1)$–simplices $S_1, S_2, \ldots, S_{2d-3}$ that coat S_0 in H. Let v be a point in E^d such that v_{d+1} is the relative interior point of the segment v_1v and let v' be a point in E^d that is strictly separated from v by H. Then it is easy to see that the d–simplices $\text{conv}(S_1 \cup \{v\}), \text{conv}(S_2 \cup \{v\}), \ldots, \text{conv}(S_{2d-3} \cup \{v\}), \text{conv}\{v_2, v_3, \ldots, v_{d+1}, v\}$ and $\text{conv}(S_0 \cup \{v'\})$ coat the d–simplex S, where S_0 is a simplex in H containing S_0 in its relative interior. This completes the proof of the Proposition.

3. **Proof of the Theorem**

Proof of (1). In the following proof we assume only that the edgelengths of the d–cubes P_1, \ldots, P_n are larger than λ.

At first, remove the d–cubes of the collection P_1, \ldots, P_n that are disjoint from P_0. Let P_1, \ldots, P_n denote the system left. Obviously, P_1, \ldots, P_n still coat P_0. We are going to show that $n = 2^d$. Recall that an orthant in E^d is the closure of a connected component of the complement of d pairwise orthogonal hyperplanes of E^d.

Lemma 1. Each d–cube $P_i, 1 \leq i \leq n$ can be replaced by an orthant O_i with $P_i \subset O_i$ such that the edges of the orthants O_1, \ldots, O_n are parallel to the coordinate–axes of E^d and the interiors of the orthants O_1, \ldots, O_n are pairwise disjoint.

Proof. Take a d cube $P_i, 1 \leq i \leq n$. Let v_i be the vertex of P_i that lies closest to the d–cube P_0. Then let O_i be the orthant with apex v_i and with edges parallel to the coordinate–axes of E^d and with $P_i \subset O_i$. We are going to show that each O_i is disjoint from the interiors of the d–cubes $P_1, \ldots, P_{i-1}, P_{i+1}, \ldots, P_n$ and then we prove that the interiors of the orthants O_1, \ldots, O_n are pairwise disjoint indeed. In order to do so we need the following:

Lemma 2. Let H be the hyperplane of any facet of P_i that does not contain v_i. Then $H \cap P_0 = \emptyset$.

Proof. (Indirect) Assume that $H \cap P_0 \neq \emptyset$. Then take the orthogonal projection of v_i onto H. This is a vertex say v_i' of P_i. Moreover, let w_i be the point of P_0 that is closest to v_i.
and let w'_i be the orthogonal projection of w_i onto H. Obviously, as $H \cap P_0 \neq \emptyset$ we have $w'_i \in P_0$. Finally, as the edgelength of P_0 is smaller than the edgelength of P_i we get that $\text{dist}(v_i, w_i) > \text{dist}(v'_i, w'_i)$. Thus, $\text{dist}(v_i, P_0) > \text{dist}(v'_i, P_0)$, a contradiction.

Now imagine a d–cube P_j, $j \neq i$ with int $P_j \cap \text{int } O_i \neq \emptyset$. Recall that int $P_j \cap \text{int } O_i = \emptyset$. Then obviously, there exists a facet of P_i the hyperplane H of which separates int P_j from int P_i. As int $P_j \cap \text{int } O_i \neq \emptyset$ therefore $v_i \notin H$. Hence, Lemma 2 implies that $H \cap P_0 = \emptyset$. Now, recall that $P_i \cap P_0 \neq \emptyset$ and $P_j \cap P_0 \neq \emptyset$. Consequently, H (that separates P_i from P_j) must intersect (the convex set) P_0, a contradiction. Hence, we proved that int $O_i \cap \text{int } P_j = \emptyset$ for any $i \neq j \in \{1, \ldots, n\}$. In order to finish the proof of Lemma 1 we proceed as follows. Take O_1 and enlarge P_1 from v_1 by a very large factor obtaining the cube P'_1 the vertex v_1 of which is still the closest vertex to P_0. As a result of the previous arguments P'_1, P_2, \ldots, P_n coat P_0. Then enlarge P_2, P_3, \ldots, P_n after each other in order to get a coating system of P_0 using rather large d–cubes. Keep doing this to see that the orthants O_1, \ldots, O_n have pairwise disjoint interiors. This completes the proof of Lemma 1.

Apply Lemma 1 to get a system $\{O_1, \ldots, O_n\}$ of orthants with $P_i \subset O_i$ and with edges parallel to the coordinate–axes of \mathbb{E}^d such that the orthants O_1, \ldots, O_n have pairwise disjoint interiors, where $1 \leq i \leq n$. Obviously, no two of the orthants O_1, \ldots, O_n are translates of each other and they coat P_0. Thus, $n \leq 2^d$. Take the $2^d - 1$ orthants with edges parallel to the coordinate–axes of \mathbb{E}^d that share the same vertex of P_0 as an apex and are disjoint from the interior of P_0. Then it is easy to see that any O_i intersects the interior of 2^d orthants out of $2^d - 1$. Hence, there must be an O_i that intersects the interior of one orthant out of $2^d - 1$ implying that its apex v_i is a vertex of P_0. Thus, $n \geq 2^d$ and so $n = 2^d$.

We are left with the proof of showing the existence of 2^d orthants O_1, \ldots, O_{2^d} that coat P_0. As a result of the previous arguments we look for 2^d orthants with the property that the apex of each orthant is a vertex of P_0 and each vertex of P_0 is an apex of exactly one orthant. We prove the existence of such orthants by induction on the dimension d. They obviously exist in case $d = 2$. So assume that if P'_0 is a $(d-1)$–cube of edgelength λ with edges parallel to the coordinate–axes of \mathbb{E}^{d-1}, then there are 2^{d-1} orthants in \mathbb{E}^{d-1} say, $O'_1, \ldots, O'_{2^{d-1}}$ that coat P'_0 in \mathbb{E}^{d-1}. Also, assume that \mathbb{E}^{d-1} is a hyperplane of \mathbb{E}^d. Then for each orthant O'_i, $1 \leq i \leq 2^{d-1}$ in \mathbb{E}^{d-1} we assign two orthants of \mathbb{E}^d say, $+O_i$ and $-O_i$ such that the distinct orthants $+O_i$ and $-O_i$ share the $(d-1)$–dimensional orthant O'_i as a facet in common. Let F'_1 and F'_2 be two opposite (i.e., disjoint) facets of P'_0. Without loss of generality we may assume that the apexes of the orthants $O'_1, \ldots, O'_{2^{d-2}}$ belong to F'_1 and the apexes of the orthants $O'_{2^{d-2}+1}, \ldots, O'_{2^d-1}$ belong to F'_2. Finally, let e_1 be the vector of length λ with $e_1 + F'_1 = F'_2$ and let e_d be a vector of length λ orthogonal to \mathbb{E}^{d-1}. Without loss of generality we may assume that the d–dimensional orthants $+O_1, \ldots, +O_{2^{d-1}}$ lie in that closed half–space of \mathbb{E}^d bounded by the \mathbb{E}^{d-1} into which e_d points.

Then take the following 2^d orthants in \mathbb{E}^d:

$$
\begin{align*}
&\epsilon_d + (-O_1), \epsilon_d + (-O_2), \ldots, \epsilon_d + (-O_{2^{d-2}}); \\
&\epsilon_1 + \epsilon_d + (+O_1), \epsilon_1 + \epsilon_d + (+O_2), \ldots, \epsilon_1 + \epsilon_d + (+O_{2^{d-2}}); \\
&-\epsilon_1 + (-O_{2^{d-2}+1}), -\epsilon_1 + (-O_{2^{d-2}+2}), \ldots, -\epsilon_1 + (-O_{2^{d-1}});
\end{align*}
$$
If P_0 is the d-cube $\text{conv}(P'_0 \cup (e_d + P'_0))$, then using the induction hypothesis that P'_0 is coated by the $(d-1)$-dimensional orthants $O'_1, \ldots, O'_{2^{d-1}}$ in E^{d-1} it is easy to see that the above 2^d d-dimensional orthants coat P_0 in E^d. This completes the proof of (1). \qed

Proof of (2). At first, we show that if P_0 has an integer edgelength say $k \geq 1$, then P_0 can be coated by $2(k+1)^d - 2k^d$ unit d-cubes with edges parallel to the coordinate axes of E^d, i.e., parallel to the edges of P_0. We prove this by induction on the dimension d. The claim is obviously true for the case $d = 1$. So assume that it is true for every $d' < d$ and take a d-cube P_0 of E^d with integer edgelength $k \geq 1$. Let H_0 be a supporting hyperplane of P_0 that intersects P_0 in a facet F_0. Then let H_l be the translate of H_0 by the vector of length l orthogonal to H_0 that intersects P_0 in a $(d-1)$-cube $F_l = H_l \cap P_0$ of edgelength k, where $l = 1, \ldots, k$. By induction each F_l can be coated by $2(k+1)^{d-1} - 2k^{d-1}$ unit $(d-1)$-cubes in H_l, where $l = 0, 1, \ldots, k$. Thus, if we place $k(2(k+1)^{d-1} - 2k^{d-1})$ unit d-cubes between the consecutive hyperplanes H_i, H_{i+1}, $0 \leq i \leq k-1$ properly, then we are left with the problem to coat P_0 along the facets F_0 and F_k only. This can be done easily by $2(k+1)^{d-1}$ unit d-cubes. Thus, P_0 is coated by $k(2(k+1)^{d-1} - 2k^{d-1}) + 2(k+1)^{d-1} = 2(k+1)^d - 2k^d$ unit d-cubes in E^d finishing the construction.

At second, notice that each unit d-cube of the above construction has a $(d-1)$-dimensional intersection with P_0. The following easy lemma is the key to prove the claim (2) completely.

Lemma 3. Let P_0 be a d-cube of E^d with integer vertices and with edges parallel to the coordinate-axes of E^d. We assign to P_0 each orthant of E^d that has an integer apex belonging to P_0 and the edges of which are parallel to the coordinate-axes of E^d such that the interior of the orthant is disjoint from P_0. If P is a unit d-cube of E^d with edges parallel to the coordinate-axes of E^d such that $P \cap P_0$ is $(d-1)$-dimensional, then the number of the orthants assigned to P_0, each of whose interior intersects P and each of whose apex belongs to P, is always 2^{d-1}.\[4pt\]

Proof. We leave the rather easy proof to the reader. \[\]

To complete the proof of (2) assume that P_0 is coated by the unit d-cubes P_1, \ldots, P_n in E^d. Without loss of generality we may assume that P_0 is a d-cube of E^d with integer vertices and with edges parallel to the coordinate-axes of E^d. Assign to P_0 all orthants described in Lemma 3. As $P_i \cap P_0$ is at most $(d-1)$-dimensional ($1 \leq i \leq n$) it is easy to see (using Lemma 3) that the interior of each of which intersects P_i and the apex of each of which belongs to P_i is at most 2^{k-1}. Thus, a very simple counting argument implies that n is at least as large as the number of unit d-cubes in the above construction, i.e., $2(k+1)^d - 2k^d$. This completes the proof of (2). \[\]

4. Proof of the Corollary

Without loss of generality we may assume that P_0 is a d-cube of edge length λ with edges parallel to the coordinate-axes of E^d such that it is coated by the unit d-cubes P_1, \ldots, P_n.
of E^d the edges of which are parallel to the coordinate-axes of E^d. If $\lambda \leq 1$, then the claim follows from the Theorem in a straight way. So, we are left with the case, when $\lambda > 1$. Then take two opposite facets say, F and F' of P_0. Obviously, F (F', resp.) is a $(d-1)$-cube of edge length λ that is covered by some d-cubes of the collection P_1, \ldots, P_n each of which has edge length smaller than λ. Thus, the number of d-cubes of the collection P_1, \ldots, P_n that cover F (F', resp.) is obviously at least 2^{d-1}. Hence, $n \geq 2^{d-1} + 2^{d-1} = 2^d$.

Acknowledgement. We are indebted to the referee for the valuable remarks which made the presentation more clear.

Received 14.10.93