Kac’s conjectures on quiver representations via arithmetic harmonic analysis

Topology of Hitchin map and arithmetic of character variety

based on joint work with M. de Cataldo and L. Migliorini

Tamás Hausel

Royal Society URF at University of Oxford
http://www.maths.ox.ac.uk/~hausel/talks.html

Quiver varieties, Donaldson-Thomas invariants and instantons,
CIRM Luminy
September 2009
Diffeomorphic spaces in non-Abelian Hodge theory

- C genus g curve; fix group GL_n

$$\mathcal{M}^d_{\text{Dol}} := \left\{ \text{moduli space of semistable rank } n \text{ degree } d \text{ G-Higgs bundles } (E, \phi) \right\}$$
 i.e. E rank n degree d bundle on C, $\phi \in H^0(C, \text{ad}(E) \otimes K)$ Higgs field

$$\mathcal{M}^d_{\text{DR}} := \left\{ \text{moduli space of flat } \text{GL}_n\text{-connections on } C \setminus \{p\}, \text{ with holonomy } e^{\frac{2\pi i d}{n}} \text{id around } p \right\}$$

$$\mathcal{M}^d_{\text{B}} := \{A_1, B_1, \ldots, A_g, B_g \in G | \prod_{i=1}^{g} A_i^{-1} B_i^{-1} A_i B_i = e^{\frac{2\pi i d}{n}} \text{id} \} \mod G$$

When $(d, n) = 1$ these are smooth non-compact varieties

Theorem (Non-Abelian Hodge Theorem)

$$\mathcal{M}^d_{\text{Dol}} \overset{\text{diff}}{=} \mathcal{M}^d_{\text{DR}} \overset{\text{diff}}{=} \mathcal{M}^d_{\text{B}}$$
(Deligne 1972) proved the existence of
\[W_0 \subset \cdots \subset W_i \subset \cdots \subset W_{2k} = H^k(X; \mathbb{Q}) \] for any complex algebraic variety \(X \), which is

- functorial
- compatible with cup-product

(Hausel-Villegas 2008) calculates

\[
E(\mathcal{M}_B; q) = |\mathcal{M}_B(\mathbb{F}_q)| = \sum_{\chi \in \text{Irr}(\text{GL}_n(\mathbb{F}_q))} \frac{|\text{GL}_n(\mathbb{F}_q)|^{2g-2}}{\chi(1)^{2g-1}} \chi(\xi_n)
\]

we find \(E(\mathcal{M}_B; 1/q) = q^d E(\mathcal{M}_B; q) \) palindromic by Alvis-Curtis duality

\[
q^{\frac{n(n-1)}{2}} \chi(1)(1/q) = \chi'(1)(q) \text{ for dual pair } \chi, \chi' \in \text{Irr}(\text{GL}_n(\mathbb{F}_q))
\]

\(\leadsto \) Curious Hard Lefschetz Conjecture (theorem when \(n = 2 \)):

\[
L^l : \text{Gr}^W_{d-2l}(H^{i-l}(\mathcal{M}_B)) \to \text{Gr}^W_{d+2l}H^{i+l}(\mathcal{M}_B) \quad \chi \mapsto \chi \cup \alpha^l,
\]

where \(\alpha \in W_4 H^2(\mathcal{M}_B) \)

The implied functional equation on the conjectured \(H(\mathcal{M}_B; q, t) = (qt)^d n H(\mathcal{M}_B; \frac{1}{qt^2}, t) \) holds
Perverse filtration

- $f : X \to Y$ a \textit{proper} map between complex algebraic varieties of relative dimension d

- (de Cataldo-Migliorini 2005) introduce \textit{perverse filtration}
\[P_i \subset P_{i+1} \subset \ldots P_k(X) \cong H^k(X) \] from the study of the Beilinson-Bernstein-Deligne-Gabber decomposition theorem for $Rf_*(\mathbb{Q}_X)$ into perverse sheaves

- the Relative Hard Lefschetz Theorem holds:
\[
L^l : \text{Gr}^{P}_{d-l}(H^*(X)) \to \text{Gr}^{P}_{d+l}H^{*+2l}(X)
\]
\[x \mapsto x \cup \alpha^l \]

where $\alpha \in H^2(X)$ is a relative ample class
Main conjecture

- recall Hitchin map

\[\chi : \mathcal{M}_{\text{Dol}} \rightarrow \mathbb{A} \cong \bigoplus_{i=1}^{n} H^0(C; K^i) \]

\[(E, \phi) \mapsto \text{charpol}(\phi) \]

(Hitchin 1987) → completely integrable Hamiltonian system and proper

\[P_k(\mathcal{M}_{\text{Dol}}) \cong W_{2k}(\mathcal{M}_B) \text{ under the isomorphism} \]

\[H^*(\mathcal{M}_{\text{Dol}}) \cong H^*(\mathcal{M}_B) \text{ from non-Abelian Hodge theory} \]

- recipe (de Cataldo-Migliorini, 2008) for perverse filtration when \(X \) smooth and \(Y \) affine:
 take \(Y_0 \subset \cdots \subset Y_i \subset \cdots Y_d = Y \)
 s.t. \(Y_i \) generic with \(\dim(Y_i) = i \) then

\[P_{k-i-1} H^k(X) = \ker(H^k(X) \rightarrow H^k(f^{-1}(Y_i))) \]

- thus Conjecture ⇒ "topology of Hitchin map reflects the arithmetic of the character variety"
now on let \(n = 2 \), i.e. study GL(2) Higgs bundles

\(\mathcal{E} \rightarrow \mathcal{M}_{\text{Dol}} \times \Sigma \) and \(\Phi : \mathcal{E} \rightarrow \mathcal{E}K \), universal Higgs bundle

\((\mathcal{E}, \Phi) |_{(E,\phi) \times \Sigma} = (E, \phi)\)

\[
c_2(\text{End}(\mathcal{E})) = 2\alpha [\Sigma]^* + \sum_{i=1}^{2g} 4\psi_i e_i - \beta
\]

for some \(\alpha \in H^2(\mathcal{M}) \), \(\psi_i \in H^3(\mathcal{M}) \) and \(\beta \in H^4(\mathcal{M}) \).

Generate \(H^*(\mathcal{M}_{\text{Dol}}(\text{PGL}_2)) \). (Hausel-Thaddeus 2004)

(Hausel-Villegas 2008) \(\Rightarrow \alpha, \psi_i, \beta \in W_4 \),

Conjecture \(\Rightarrow \alpha, \psi_i, \beta \in P_2 \Rightarrow \psi_i, \beta \in \ker(H^*(\mathcal{M}_{\text{Dol}}) \rightarrow H^*(\chi^{-1}(Y_0)))\)

Yes! was proved by (Thaddeus 1990)

\(\beta \in P_2 H^4(\mathcal{M}_{\text{Dol}}) \) would mean

\(\beta \in \ker(H^4(\mathcal{M}_{\text{Dol}}) \rightarrow H^4(\chi^{-1}(Y_1))) \) i.e. \(\beta \) vanishes over a generic curve in \(\mathbb{A} \).
Applications of Ngô’s support theorem

Theorem (Ngô, 2008)

\[\chi^{\text{ell}} : \mathcal{M}_{\text{ell}} \subset \mathcal{M}_{\text{Dol}} \rightarrow \mathbb{A}_{\text{ell}} \subset \mathbb{A} \text{ over points with integral spectral curve.} \]

\[R\chi^{\text{ell}}_* \mathbb{Q} \cong \bigoplus_{i \geq 0} IC_{\mathbb{A}_{\text{ell}}}(L^{\wedge i})[-i], \]

where \(L^{\wedge i} = R^i\chi^{\text{ell}}_*(\mathbb{Q}) = \wedge^i R^1\chi^{\text{ell}}_*(\mathbb{Q}) \) on \(\mathbb{A}_{\text{reg}} \), where spectral curve is smooth.

Applications for \(n = 2 \):

- \((2 - 2g)\beta = c_2(\mathcal{M}_{\text{Dol}})\) vanishes on \(\mathbb{A}_{\text{reg}} \). Ngô’s support theorem \(\Rightarrow \beta \) vanishes on the generic line \(\Rightarrow \beta \in P_2 \).
- By computation \(IC_{\mathbb{A}_{\text{ell}}}(L^{\wedge i}) = j^\text{reg}_*(L^{\wedge i}) \) , i.e. no higher cohomology sheaves \(\Rightarrow \) perverse filtration on \(H^*(\mathcal{M}_{\text{Dol}}^{\text{ell}}) \) is compatible with cup-product \(\Rightarrow P \subset W \) on \(H^*(\mathcal{M}_{\text{Dol}}) \) (almost) \(\Rightarrow \) CHL (Thm for \(n = 2 \)) and RHL imply \(P = W \) (almost)
One more ingredient needed: the intersection form $H^*_c(M_{Dol}) \to H^*(M_{Dol})$ is trivial when $n = 2$ by (Hausel, 1998)

Thus in particular $\beta^i \in P_{2i}(H^{4i}(M_{Dol}))$

i.e. vanishes over a generic $2i - 1$ dimensional subvariety in M_{Dol}

the pure subring $\langle 1, \beta, \ldots, \beta^{g-1} \rangle$ is dual by RHL with the g-dimensional $H^{mid}(M_{Dol})$

thus $\dim P_{mid/2-2i}/P_{mid/2-2i-1}H^{mid}(M_{Dol}) = 1$ for $i = 0, 1, \ldots, g - 1$ and 0 otherwise

consequently $\sum_i q^i \dim P_{mid/2-i}H^{mid}(M_{Dol}) = A_{S_g}(2, q)$;

where S_g is the g-loop quiver
A-polynomial and perverse filtration

- C genus g Riemann surface with punctures $a_1, \ldots, a_k \in \mathbb{C}$
- $\mu = (\mu^1, \ldots, \mu^k) \in \mathcal{P}(n)^{1..k}$
- $\mathcal{M}^\mu_{\text{Dol}}$ moduli space of stable parabolic Higgs bundles with generic weights at the quasi-parabolic structure at a_i of type μ^i
- For every μ and g one can find generic weights $\sim \mathcal{M}^\mu_{\text{Dol}}$ is always smooth
- Can arrange that $\mathcal{M}^\mu_{\text{Dol}} \overset{\text{diff}}{\simeq} \mathcal{M}^\mu_{\text{B}}$

Conjecture

$$P_k(\mathcal{M}^\mu_{\text{Dol}}) \overset{\sim}{=} W_{2k}(\mathcal{M}^\mu_{\text{B}}) \text{ under the isomorphism}$$

$$H^*(\mathcal{M}^\mu_{\text{Dol}}) \overset{\sim}{=} H^*(\mathcal{M}^\mu_{\text{B}})$$

Corollary

$$\sum_i q^i \dim P_{\text{mid}/2-i} H^\text{mid} \left(\mathcal{M}^\mu_{\text{Dol}} \right) = A_{\Gamma_\mu} (\alpha_\mu, q) \text{ in particular}$$

$$\dim H^\text{mid} \left(\mathcal{M}^\mu_{\text{Dol}} \right) = A_{\Gamma_\mu} (\alpha_\mu, 1) \text{ and}$$

$$\dim \text{Im}(H^\text{mid}_c \left(\mathcal{M}^\mu_{\text{Dol}} \right)) = A_{\Gamma_\mu} (\alpha_\mu, 0) = m_{\alpha_\mu} \text{ for}$$

$$\text{Im}(H^\text{mid}_c \left(\mathcal{M}^\mu_{\text{Dol}} \right)) \subset H^\text{mid} \left(\mathcal{M}^\mu_{\text{Dol}} \right)$$
Hilbert schemes of points on surfaces

Let $C = E$ elliptic curve, $k = 1$ and $\mu = (\mu^1)$ with
$\mu^1 = (n - 1, 1)$

Then one can show that $H^*(M^\mu_B) \cong H^*((\mathbb{C}^\times \times \mathbb{C}^\times)^[n])$

preserving the weight filtration

One can also show that $M^\mu_{\text{Dol}} \cong (T^*E)^[n]$ and the Hitchin map
is just $(T^*E)^[n] \rightarrow (T^*E)^{(n)} \rightarrow \mathbb{C}^{(n)}$

Theorem (de Cataldo, Hausel, Migliorini 2009)

$P_k(H^*((T^*E)^[n])) \cong W_{2k}(H^*((\mathbb{C}^\times \times \mathbb{C}^\times)^[n]))$ under the canonical
isomorphism $H^*((T^*E)^[n])) \cong H^*((\mathbb{C}^\times \times \mathbb{C}^\times)^[n])$

in this case μ is indivisible and the quiver variety
$M_{\alpha_\mu} \cong (\mathbb{C}^2)^[n]$

$A_{\Gamma_\mu}(\alpha_\mu, q) = q^n P((\mathbb{C}^2)^[n], 1/\sqrt{q})$ by Crawley-Boevey-Van den
Bergh

so in this case
$\sum_i q^i \dim P_{\text{mid}/2-i}H^{2n}((T^*E)^[n]) = q^n P((\mathbb{C}^2)^[n], 1/\sqrt{q}) = A_{\Gamma_\mu}(\alpha_\mu, q)$
Cohomology of quiver varieties \leadsto representation theory of Kac-Moody algebras

their Poincaré polynomials \leadsto A-polynomials of quiver representations

cohomology of character varieties and moduli of parabolic Higgs bundles (with extra filtrations) \leadsto deformation of cohomology of quiver varieties

their weight polynomials \leadsto deformations of A-polynomials given by Macdonald polynomials

What is the corresponding deformation of the Kac-Moody algebra?

Can consider SL_n and PGL_n instead of GL_n \leadsto

 Hausel-Thaddeus mirror symmetry conjecture & Ngô’s proof of the fundamental lemma in the Langlands program
 \leadsto p-adic harmonic analysis

Connection with our arithmetic harmonic analysis?